Demonstrates water hammer and cavitation and the propagation of shock waves at sonic velocity in water.
The global standard in transformational engineering labs for Controls, Robotics, and Mechatronics, optimized for the academic setting.
Academic institutions trust Quanser to strengthen their reputation through transformative teaching and research labs that accurately replicate theories and bring engineering mathematics and concepts to life.
“We are in a golden age of engineering education. There’s a lot to be excited about and a lot to be challenged by. The education we offer students must capture this momentum and help them realize their potential.”
– Paul Gilbert, CEO, Quanser
The standard in controls teaching and research.
Modeling & controls lie at the core of emerging technological breakthroughs. From drones to reusable rockets to self-driving vehicles, the fundamentals of modeling & control are a critical skill for engineers to compete and innovate.
Process Control
The modern industrial systems that are fundamental to modern automation and manufacturing processes require specialized control systems to perform and manage their daily operations. Quanser offers a variety of plants that can be used to teach the key elements of modern process control including cascade control with the Maglev and Ball and Beam systems as well as regulator design with the Coupled Tanks.
Classic Systems Control
The classic progression of control systems education begins with the fundamentals of modeling and designing control plants for linear systems. Quanser offers a diverse collection of plants that can be used as ideal platforms to offer students experience using classic control principles. These plants offer basic dynamics that range from rotary to linear motion.
Modern Systems Control
Quanser has a collection of plants that can be used to show how a modern approach to control systems allows for the creation of precise controllers for complex systems with higher-order dynamics. These plants include both dynamically complex plants such as the linear inverted pendulum, and double pendulum, as well as plants such as the active suspension that require the use of both state-space modeling to express the complex coupled dynamics of the system.
Unstable Systems
Some of the most exciting emerging technologies from bipedal walking robots to reusable rockets requires the design of controllers for unstable systems. Quanser offers several plants that give students an experience creating control systems for directly analogous dynamic systems.
Whether you are researching advanced algorithms or require state of the art technology to teach tomorrow's robotics engineers, Quanser's engineering lab solutions has the perfect option for your needs.
Mobile Robotics
Many consider mobile robotics the most dynamic engineering specialization. Quanser’s ground and aerial solutions offer a combination of advanced hardware with a powerful software framework powered by Quanser’s renowned QUARC® and built on the MATLAB®/Simulink® platform. Quanser solutions feature the latest processors and flexible support of sensors. They may be combined to create a UVS Lab that offers full localization and a comprehensive platform for multi-agent applications.
Manipulator Robotics
The study and exploration of serial link robots has been a core component of robotics education and research. Originally, the study of manipulator robots was driven by applications in manufacturing, but later became an important subsystem in more complex robotic applications in both space robotics and mobile robotics.
Open Architecture Research Robots
Quanser's research solutions allow you to deploy your own advanced control algorithms by providing students and researchers direct access to the robot’s sensors and actuators. With the capabilities of the communication block sets of Quanser’s QUARC software validating your robotic control algorithms is easier than ever.
Telerobotics and Haptics
This solution is the platform of choice for advanced telerobotic applications with haptic feedback. It consists of an advanced robot manipulator equipped with a force/torque sensor mated a high DOF haptic manipulator and Quanser’s QUARC real-time control software. This turn-key solution can be deployed quickly and is readily adaptable for a wide range of force-feedback research applications. Combined with visualization, it is the ideal platform for medical simulations, remote vehicle operations, and more.
Essential sequence for undergrad mechatronics
Quanser offers the only complete Mechatronics lab sequence that covers everything from fundamentals to fully integrated systems.
With Quanser’s mechatronic solutions, instructors can focus on teaching fundamentals of the mechatronics subsystems and advanced applications with fully developed robust hardware powered by rigorous software.
Traditionally, developing a fully functional mechatronic system requires expertise in actuation, sensing, control, and vision, along with time developing hardware and software. This development process, although rigorous, can interfere with understanding fundamentals, and takes away precious time that can be otherwise dedicated to innovation. With Quanser’s mechatronic lab equipment, instructors can focus on teaching fundamentals of the mechatronic subsystems and advanced applications with fully developed robust hardware powered by rigorous software.
Built exclusively for the NI ELVIS platform, the Mechatronics top boards series includes:
- Sensors: survey of common mechatronic sensors used in industry
- Actuators: design considerations, common specifications, interfacing and operation techniques for a variety of actuators
- Systems: a complete mechatronic system designed to explore, develop and integrate component subsystems
Integrated Systems
Quanser has a variety of products for teaching system integration. The Quanser Mechatronic Systems board is the flagship systems trainer with hardware, software, and courseware developed specifically to teach mechatronic systems integration. From actuators and FPGA sensor integration, through mathematical modeling and image processing, to state machines and advanced applications, the Quanser Mechatronic Systems board offers a rich experience for students.
The QUBE-Servo 2 and Quanser AERO also offer students a series of advanced mechatronic challenges that lead them towards more advanced integration tasks including flight control of a virtual V22 Osprey, and cruise control of a virtual vehicle. Further opportunities to extend the topics covered by all of the Quanser products open up a variety of pathways for instructors to educate, and students to innovate, no matter what be the engineering background.
Pages
-
Item Number:TE86 - Experiment
-
Item Number:TD1007 - Experiment
An experimental unit to show how cross-flow water to air heat exchangers work.
-
Item Number:TM1001 - EXPERIMENT
A compact, bench-mounted apparatus that demonstrates ‘whirling’ in different horizontal shafts with a variety of fixings (end conditions), loaded and unloaded.
-
Item Number:AE1005V - EXPERIMENT
This is a versatile, compact apparatus for teaching the fundamentals of kinetic wind energy conversion into electrical power. Flexibility is at the core, it has a castor-mounted frame for mobility and functionality and allows students to 3D-print their own blades for advanced experimentation.
-
Item Number:AU9020
This solution provides a complete introduction to pneumatic circuit design and construction. The comprehensive selection of components works together with the included curriculum courseware and teach ...
-
Item Number:AVRS2
Quanser’s new Autonomous Vehicles Research Studio is the ideal solution for academics looking to build an indoor multi-vehicle research lab in a short amount of time. Consisting of QDrone quadrotors and QBot 2e ground vehicles, ground control station, vision, and safety equipment, the Autonomous Vehicles Research Studio is the only option for research groups looking to jumpstart autonomous robotics research programs and be productive in a very short amount of time.
-
Item Number:CN3885
This kit of parts allows students to assemble all three of our MicroCNC machines (only one at any one time). The kit is supplied with all necessary parts and a getting started manual, describing ...
-
Item Number:ST1795
The complete set of Structures includes seven kits to teach students the commonly taught principles of Structures across college and universities worldwide, in the subject area of mechical engineering ...
-
Item Number:ESF - PackageThis package includes a complete set of TecQuipment’s Engineering Science kits (ES2-19) and three Work Panels (ES1) within a mobile trolley.
-
Item Number:ESB2 - Package
Contains one of each of the Deflection of Beams, Torsion of Circular Sections, Tensile Tester and Spring Tester Kits, plus four Work Panels (ES1).